Population forecast accuracy: does the choice of summary measure of error matter?

نویسنده

  • Stefan Rayer
چکیده

Population projections are judged primarily by their accuracy. The most commonly used measure for the precision component of accuracy is the mean absolute percent error (MAPE). Recently, the MAPE has been criticized for overstating forecast error and other error measures have been proposed. This study compares the MAPE with two alternative measures of forecast error, the Median APE and an M-estimator. In addition, the paper also investigates forecast bias. The analysis extends previous studies of forecast error by examining a wide range of trend extrapolation techniques using a dataset that spans a century for a large sample of counties in the US. The main objective is to determine whether the choice of summary measure of error makes a difference from a practitioner’s standpoint. The paper finds that the MAPE indeed produces error values that exceed the robust measures. However, except for situations where extreme outliers rendered the MAPE meaningless, and which are rare in real world applications, there was not a single instance where using an alternative summary measure of error would have led to a fundamentally different evaluation of the projections. Moreover, where differences existed, it was not always clear that the values and patterns provided by the robust measures were necessarily more correct than those obtained with the MAPE. While research into refinements and alternatives to the MAPE and mean algebraic percent error are worthwhile, consideration of additional evaluation procedures that go beyond a single criterion might provide more benefits to producers and users of population forecasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Commentary on Error Measures

Is the choice of an error measure to identify the most accurate forecasting method a question of personal taste? It appears that this may be the case although the papers by Armstrong and Collopy and by Fildes argue that it should not be. Carbone and Armstrong (1982) found that Root Mean Square Error (RMSE) was the most preferred measure of forecast accuracy. This is despite the fact that it is ...

متن کامل

Using the R-MAPE index as a resistant measure of forecast accuracy.

BACKGROUND The mean absolute percentage error (MAPE) is probably the most widely used goodness-of-fit measure. However, it does not meet the validity criterion due to the fact that the distribution of the absolute percentage errors is usually skewed to the right, with the presence of outlier values. In these cases, MAPE overstates the corresponding population parameter. In this study, we propos...

متن کامل

Providing A Model for Management Earnings Forecast Bias

Despite The Important Role That Management Profit Forecasting Plays In The Decision Making Of Capital Market Actors, These Predictions Appear To Be Biased. In The Attempt To Measure The Bias Of Predicting Profit Management, Numerous One- Dimensional Measurement Tools Have Been Proposed In The Accounting And Finance Literature. Despite These Efforts, No Comprehensive Composite Index Has Been Dev...

متن کامل

Measuring the Benefits of Healthcare: DALYs and QALYs – Does the Choice of Measure Matter? A Case Study of Two Preventive Interventions

Background The measurement of health benefits is a key issue in health economic evaluations. There is very scarce empirical literature exploring the differences of using quality-adjusted life years (QALYs) or disability-adjusted life years (DALYs) as benefit metrics and their potential impact in decision-making.   Methods Two previously published models delivering outputs in QALYs, were adapted...

متن کامل

Multi - dimensional Error Measures for Ex Post Facto Forecast and Estimation Evaluations

This paper deals with an issue that appears to be unexplored by demographers. The issue Is based on the question: "if one was not only doing ex post facto evaluations of estimates (or projections) of the total population but by characteristics such as race and geography, how would one summarize the summary measures of error?" The paper examines this issue in two dimensions using a standard summ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007